- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Abelian n-division fields of elliptic curves and Brauer...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Abelian n-division fields of elliptic curves and Brauer groups of product Kummer and abelian surfaces Viray, Bianca
Description
Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $\mathbb{Q}$. In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $\mathrm{Br}{Y}/ \mathrm{Br}_1{Y}$ is finite. We study this quotient for the family of surfaces that are geometrically isomorphic to a product of isogenous non-CM elliptic curves, as well as the related family of geometrically Kummer surfaces; both families can be characterized by their geometric N\'eron-Severi lattices. Over a field of characteristic 0, we prove that the existence of a strong uniform bound on the size of the odd-torsion of $\mathrm{Br}{Y}/ \mathrm{Br}_1{Y}$ is equivalent to the existence of a strong uniform bound on integers $n$ for which there exist non-CM elliptic curves with abelian $n$-division fields. Using the same methods we show that, for a fixed prime $p$, a number field $k$ of fixed degree $r$, and a fixed discriminant of the geometric N\'eron-Severi lattice, $(\mathrm{Br}{Y} / \mathrm{Br}_1{Y})[p^\infty]$ is bounded by a constant that depends only on $p$, $r$, and the discriminant. This is joint work with Anthony Várilly-Alvarado.
Item Metadata
Title |
Abelian n-division fields of elliptic curves and Brauer groups of product Kummer and abelian surfaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-05-30T15:01
|
Description |
Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $\mathbb{Q}$. In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $\mathrm{Br}{Y}/ \mathrm{Br}_1{Y}$ is finite. We study this quotient for the family of surfaces that are geometrically
isomorphic to a product of isogenous non-CM elliptic curves, as well as the related family of geometrically Kummer surfaces; both families can be characterized by their geometric N\'eron-Severi lattices. Over a field of characteristic 0, we prove that the existence of a strong uniform bound on the size of the odd-torsion of $\mathrm{Br}{Y}/ \mathrm{Br}_1{Y}$ is equivalent to the existence of a strong uniform bound on integers $n$ for which there exist non-CM elliptic curves with abelian $n$-division fields. Using the same methods we show that, for a fixed prime $p$, a number field $k$ of fixed degree $r$, and a fixed discriminant of the geometric N\'eron-Severi lattice, $(\mathrm{Br}{Y} / \mathrm{Br}_1{Y})[p^\infty]$ is bounded by a constant that depends only on $p$, $r$, and the discriminant. This is joint work with Anthony Várilly-Alvarado.
|
Extent |
50 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Washington
|
Series | |
Date Available |
2017-11-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0360734
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International