- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- p-ranks of Prym Varieties
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
p-ranks of Prym Varieties Ozman, Ekin
Description
We study the relationship between the p-rank of a curve and the $p$-ranks of the Prym varieties of its unramified cyclic covers in characteristic $p > 0$. For arbitrary primes $p$ and $\ell$ with $\ell \ne p$ and integers $g \ge 3$ and $0 \le f \le g$, we generalize a result of Nakajima by proving that the Prym varieties of all the unramified $\mathbb{Z}/\ell$-covers of a generic curve $X$ of genus $g$ and $p$-rank $f$ are ordinary. Furthermore, when $p \ge 5$ and $\ell \ne 2$, we prove that there exists a curve of genus $g$ and $p$-rank $f$ having an unramified double cover whose Prym has p-rank $f^\prime$ for each $g/2 − 1 \le f^\prime \le g − 2$; (these Pryms are not ordinary). Using work of Raynaud, we use these two theorems to prove results about the (non)-intersection of the \ell-torsion group scheme with the theta divisor of the Jacobian of a generic curve $X$ of genus $g$ and $p$-rank $f$. The proofs involve geometric results about the $p$-rank stratification of the moduli space of unramified cyclic covers of curves. This is joint work with Rachel Pries.
Item Metadata
Title |
p-ranks of Prym Varieties
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-05-30T10:10
|
Description |
We study the relationship between the p-rank of a curve and the $p$-ranks of the Prym varieties of its unramified cyclic covers in characteristic $p > 0$. For arbitrary primes $p$ and $\ell$ with $\ell \ne p$ and integers $g \ge 3$ and
$0 \le f \le g$, we generalize a result of Nakajima by proving that the Prym varieties of all the unramified $\mathbb{Z}/\ell$-covers of a generic curve $X$ of genus $g$ and $p$-rank $f$ are ordinary. Furthermore, when $p \ge 5$ and $\ell \ne 2$, we prove that there exists a curve of genus $g$ and $p$-rank $f$ having an unramified double cover whose Prym has p-rank $f^\prime$ for each $g/2 − 1 \le f^\prime \le g − 2$; (these Pryms are not ordinary). Using work of Raynaud, we use these two theorems to prove results about the (non)-intersection of the \ell-torsion group scheme with the theta divisor of the Jacobian of a generic curve $X$ of genus $g$ and $p$-rank $f$. The proofs involve geometric results about the $p$-rank stratification of the moduli space of unramified cyclic covers of curves. This is joint work with Rachel Pries.
|
Extent |
26 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Bogazici University
|
Series | |
Date Available |
2017-11-27
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0360732
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International