- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Images of toric varieties and liftability of the Frobenius...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Images of toric varieties and liftability of the Frobenius morphism Achinger, Piotr
Description
The celebrated proof of the Hartshorne conjecture by Shigefumi Mori allowed for the study of the geometry of higher dimensional varieties through the analysis of deformations of rational curves. One of the many applications of Mori's results was Lazarsfeld's positive answer to the conjecture of Remmert and Van de Ven which states that the only smooth variety that the projective space can map surjectively onto is the projective space itself. Motivated by this result, a similar problem has been considered for other kinds of varieties such as abelian varieties (Demailly-Hwang-Mok-Peternell) or toric varieties (Occhetta-Wiśniewski). In my talk, I would like to present a completely new perspective on the problem coming from the study of Frobenius lifts in positive characteristic. This is based on a joint project with Jakub Witaszek and Maciej Zdanowicz.
Item Metadata
Title |
Images of toric varieties and liftability of the Frobenius morphism
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-05-11T09:30
|
Description |
The celebrated proof of the Hartshorne conjecture by Shigefumi Mori
allowed for the study of the geometry of higher dimensional varieties
through the analysis of deformations of rational curves. One of the
many applications of Mori's results was Lazarsfeld's positive answer
to the conjecture of Remmert and Van de Ven which states that the only
smooth variety that the projective space can map surjectively onto is
the projective space itself. Motivated by this result, a similar
problem has been considered for other kinds of varieties such as
abelian varieties (Demailly-Hwang-Mok-Peternell) or toric varieties
(Occhetta-Wiśniewski). In my talk, I would like to present a
completely new perspective on the problem coming from the study of
Frobenius lifts in positive characteristic. This is based on a joint
project with Jakub Witaszek and Maciej Zdanowicz.
|
Extent |
61 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: IHES
|
Series | |
Date Available |
2017-11-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0357476
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International