- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Droplet phase in a nonlocal isoperimetric problem under...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Droplet phase in a nonlocal isoperimetric problem under confinement Alama, Stanley
Description
We address small volume fraction asymptotic properties of a nonlocal isoperimetric functional with a confinement term, derived as the sharp interface limit of a variational model for self-assembly of diblock copolymers under confinement by nanoparticle inclusion. We introduce a small parameter $\eta$ to represent the size of the domains of the minority phase, and study the resulting droplet regime as $\eta\to 0$. A key role is played by a parameter $M$ which gives the total volume of the droplets at order $\eta^3$ and its relation to existence and non-existence of minimizers to a nonlocal isoperimetric functional on $\mathbb{R}^3$. For large values of $M$, the minority phase splits into several droplets at an intermediate scale $\eta^{1/3}$, while for small $M$ minimizers form a single droplet converging to the maximum of the confinement density.
Item Metadata
| Title |
Droplet phase in a nonlocal isoperimetric problem under confinement
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2017-05-02T13:30
|
| Description |
We address small volume fraction asymptotic properties of a nonlocal isoperimetric functional with a confinement term, derived as the sharp interface limit of a variational model for self-assembly of diblock copolymers under confinement by nanoparticle inclusion. We introduce a small parameter $\eta$ to represent the size of the domains of the minority phase, and study the resulting droplet regime as $\eta\to 0$. A key role is played by a parameter $M$ which gives the total volume of the droplets at order $\eta^3$ and its relation to existence and non-existence of minimizers to a nonlocal isoperimetric functional on $\mathbb{R}^3$. For large values of $M$, the minority phase splits into several droplets at an intermediate scale $\eta^{1/3}$, while for small $M$ minimizers form a single droplet converging to the maximum of the confinement density.
|
| Extent |
46 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: McMaster University
|
| Series | |
| Date Available |
2017-10-29
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0357390
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International