- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Arrangements of pseudocircles on surfaces.
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Arrangements of pseudocircles on surfaces. Medina Graciano, Carolina
Description
A {\em pseudocircle} is an oriented Jordan closed curve on some surface. A finite collection of pseudocircles that pairwise cross in exactly two points is an {\em arrangement of pseudocircles}, and it is {\em strict} if each pseudocircle is a separating curve on the host surface. Following Linhart and Ortner, the combinatorial properties of an arrangement of pseudocircles are encoded in an {\em intersection matrix}, in which each row corresponds to a pseudocircle, and the entries of the row give the cyclic order of its (signed) intersections with the other pseudocircles in the arrangement. Ortner proved that an arrangement of pseudocircles (given as an intersection matrix) can be embedded into the sphere if and only if each of its subarrangements of size four can be embedded in the sphere. In this work we present an extended result, where it was shown that an arrangement of pseudocircles (given as an intersection matrix) is embeddable into the compact orientable surface $S_g$ of genus $g$ if and only if each of its subarrangements of size $4(g+1)$ can be embedded in $S_g$. Joint work with Edgardo Roldan and Gelasio Salazar.
Item Metadata
Title |
Arrangements of pseudocircles on surfaces.
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-10-27T15:55
|
Description |
A {\em pseudocircle} is an oriented Jordan closed curve on some surface. A finite collection of pseudocircles that pairwise cross in exactly two points is an {\em arrangement of pseudocircles}, and it is {\em strict} if each pseudocircle is a separating curve on the host surface. Following Linhart and Ortner, the combinatorial properties of an arrangement of pseudocircles are encoded in an {\em intersection matrix}, in which each row corresponds to a pseudocircle, and the entries of the row give the cyclic order of its (signed) intersections with the other pseudocircles in the arrangement. Ortner proved that an arrangement of pseudocircles (given as an intersection matrix) can be embedded into the sphere if and only if each of its subarrangements of size four can be embedded in the sphere. In this work we present an extended result, where it was shown that an arrangement of pseudocircles (given as an intersection matrix) is embeddable into the compact orientable surface $S_g$ of genus $g$ if and only if each of its subarrangements of size $4(g+1)$ can be embedded in $S_g$. Joint work with Edgardo Roldan and Gelasio Salazar.
|
Extent |
22 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Universidad Autónoma de San Luis Potosí
|
Series | |
Date Available |
2017-06-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0348274
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International