Open Collections will undergo maintenance on Thursday, July 24th, 2025. The site will not be available from 8:00 AM - 9:00 AM PST and performance may be impacted from 9:00 AM - 12:00 PM PST.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Improved upper bounds on the diameter of lattice polytopes.
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Improved upper bounds on the diameter of lattice polytopes. Deza, Antoine
Description
Let $D(d,k)$ denote the largest possible diameter over all polytopes which vertices are drawn from $\{ 0,1,...,k\}^d$. In 1989, Naddef showed that $D(d,1)=d$. This result was generalized in 1992 by Kleinschmidt and Onn who proved that $D(d,k) \leq kd$, before Del Pia and Michini tightened in 2016 the inequality to $D(d,k) \leq (k-1/2)d$ for $k\geq 2$. We show that $D(d,k) \leq (k-2/3)d$ for $k \geq 3$. In addition, we show that $D(4,3)=8$, which substantiates the conjecture stating that $D(d,k) \leq (k+1)d/2$, and is achieved by a Minkowski sum of lattice vectors. Based on a joint work with Lionel Pournin, Universit\'e Paris 13.
Item Metadata
Title |
Improved upper bounds on the diameter of lattice polytopes.
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-10-27T10:00
|
Description |
Let $D(d,k)$ denote the largest possible diameter over all polytopes which vertices are drawn from $\{ 0,1,...,k\}^d$. In 1989, Naddef showed that $D(d,1)=d$. This result was generalized in 1992 by Kleinschmidt and Onn who proved that $D(d,k) \leq kd$, before Del Pia and Michini tightened in 2016 the inequality to $D(d,k) \leq (k-1/2)d$ for $k\geq 2$. We show that $D(d,k) \leq (k-2/3)d$ for $k \geq 3$. In addition, we show that $D(4,3)=8$, which substantiates the conjecture stating that $D(d,k) \leq (k+1)d/2$, and is achieved by a Minkowski sum of lattice vectors. Based on a joint work with Lionel Pournin, Universit\'e Paris 13.
|
Extent |
45 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: McMaster University
|
Series | |
Date Available |
2017-06-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0348155
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International