- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Intersection depth and a Helly-type theorem for fractional...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Intersection depth and a Helly-type theorem for fractional transversals. Martínez, Leonardo
Description
We introduce the notion of \textit{intersection depth} for a finite family of convex sets $\mathcal{F}$ in $\mathbb{R}^d$. Specifically, we say that a point $p$ has \textit{intersection depth $m$ with respect to $\mathcal{F}$} if every hyperplane that contains $p$ intersects at least $m$ sets of $\mathcal{F}$. We study some nice properties of intersection depth and we relate it to other notions of depth in the literature.
By imposing additional intersection hypothesis to the family $\mathcal{F}$, we show how to prove sharp centerpoint theorems for intersection depth. These results can be thought of as a refinement that interpolates between the classical Rado's centerpoint theorem and Helly's theorem. Finally, we use this result to get a new Helly-type theorem for fractional transversal hyperplanes that cannot be obtained from the well-studied $T(k)$ hypothesis.
Item Metadata
| Title |
Intersection depth and a Helly-type theorem for fractional transversals.
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2016-10-25T09:00
|
| Description |
We introduce the notion of \textit{intersection depth} for a finite family of convex sets $\mathcal{F}$ in $\mathbb{R}^d$. Specifically, we say that a point $p$ has \textit{intersection depth $m$ with respect to $\mathcal{F}$} if every hyperplane that contains $p$ intersects at least $m$ sets of $\mathcal{F}$. We study some nice properties of intersection depth and we relate it to other notions of depth in the literature.
By imposing additional intersection hypothesis to the family $\mathcal{F}$, we show how to prove sharp centerpoint theorems for intersection depth. These results can be thought of as a refinement that interpolates between the classical Rado's centerpoint theorem and Helly's theorem. Finally, we use this result to get a new Helly-type theorem for fractional transversal hyperplanes that cannot be obtained from the well-studied $T(k)$ hypothesis.
|
| Extent |
46 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: UNAM
|
| Series | |
| Date Available |
2017-06-06
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0348137
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Postdoctoral
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International