- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Canonical structures in traffic spaces: with a view...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Canonical structures in traffic spaces: with a view toward random matrices Au, Benson
Description
For a tracial $*$-probability space $(\mathcal{A}, \varphi)$, Cébron, Dahlqvist, and Male constructed an enveloping traffic space $(\mathcal{G}(\mathcal{A}), \tau)$ that extends the trace $\varphi$ [CDM16]. This construction comes equipped with some canonical independence structure: in a joint work in progress with Male, we show that $(\mathcal{G}(\mathcal{A}), \tau)$ can be realized as the free product of three natural subalgebras (in the sense of Voiculescu), and that there exists a canonical homomorphic conditional expectation $P$ onto a subalgebra intermediate to $\mathcal{A}$ and $\mathcal{G}(\mathcal{A})$. Combining this with the coherent convergence properties of $(\mathcal{G}(\mathcal{A}), \tau)$ proved in [CDM16], we show that free independence describes the asymptotic behaviour of a large class of dependent random matrices (in particular, we recover and explain a result of Bryc, Dembo, and Jiang on random Markov matrices [BDJ06]).
Item Metadata
Title |
Canonical structures in traffic spaces: with a view toward random matrices
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-12-06T11:28
|
Description |
For a tracial $*$-probability space $(\mathcal{A}, \varphi)$, Cébron, Dahlqvist, and Male constructed an enveloping traffic space $(\mathcal{G}(\mathcal{A}), \tau)$ that extends the trace $\varphi$ [CDM16]. This construction comes equipped with some canonical independence structure: in a joint work in progress with Male, we show that $(\mathcal{G}(\mathcal{A}), \tau)$ can be realized as the free product of three natural subalgebras (in the sense of Voiculescu), and that there exists a canonical homomorphic conditional expectation $P$ onto a subalgebra intermediate to $\mathcal{A}$ and $\mathcal{G}(\mathcal{A})$. Combining this with the coherent convergence properties of $(\mathcal{G}(\mathcal{A}), \tau)$ proved in [CDM16], we show that free independence describes the asymptotic behaviour of a large class of dependent random matrices (in particular, we recover and explain a result of Bryc, Dembo, and Jiang on random Markov matrices [BDJ06]).
|
Extent |
33 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of California, Berkeley
|
Series | |
Date Available |
2017-05-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0347459
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International