- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Quotients of degenerate Sklyanin algebras
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Quotients of degenerate Sklyanin algebras De Laet, Kevin
Description
The 3-dimensional Sklyanin algebras degenerate to algebras isomorpic to either $\frac{\mathbb{C} < x,y,z > }{(x^2,y^2,z^2)}$ or $\frac{\mathbb{C} < x,y,z > }{ (xy,yz,zx)} $ due to a result of S. Paul Smith. The Heisenberg group of order 27, $H_3$ acts on these algebras as gradation preserving automorphisms. I will show that, using the representation theory of $H_3$, there exists a 1-dimensional family of quotients $A_t$, $t \in \mathbb{C}$ of these algebras such that $A_t \cong S(V)$ as graded $H_3$-module, where $S(V)$ is the polynomial ring in 3 variables with $V$ the Schrödinger representation of $H_3$. In addition, these quotients are noetherian and have a central element of degree 3, as in the regular case.
Item Metadata
Title |
Quotients of degenerate Sklyanin algebras
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-09-12T15:30
|
Description |
The 3-dimensional Sklyanin algebras degenerate to algebras isomorpic to either $\frac{\mathbb{C} < x,y,z > }{(x^2,y^2,z^2)}$ or
$\frac{\mathbb{C} < x,y,z > }{ (xy,yz,zx)} $ due to a result of S. Paul Smith. The Heisenberg group of order 27, $H_3$ acts on these algebras as gradation preserving automorphisms. I will show that, using the representation theory of $H_3$, there exists a 1-dimensional family of quotients $A_t$, $t \in \mathbb{C}$ of these algebras such that $A_t \cong S(V)$ as graded $H_3$-module, where $S(V)$ is the polynomial ring in 3 variables with $V$ the Schrödinger representation of $H_3$. In addition, these quotients are noetherian and have a central element of degree 3, as in the regular case.
|
Extent |
49 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Antwerp
|
Series | |
Date Available |
2017-03-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0343164
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International