- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Molecular simulations elucidate soft elasticity in...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Molecular simulations elucidate soft elasticity in polydomain liquid crystal elastomers Skacej, Gregor
Description
Liquid crystal elastomers (LCE) — polymer networks with embedded liquid crystal units — are functional materials characterized by a pronounced coupling between elastic strain and liquid crystalline orientational ordering. When prepared by polymerization and cross-linking in the isotropic phase, and then cooled, the resulting polydomain ma- terials exhibit an extraordinary soft elastic behavior under unidirectional pulling, with a plateau-like region in the stress-strain curve, before turning into a monodomain LCE where a standard elastic resistance is recovered. Here we investigate the microscopic origin of this behavior by performing large-scale molecular iso-stress Monte Carlo simula- tions of swollen polydomain main-chain LCE. Our simulations are based on the soft-core Gay-Berne interaction potential and reproduce the stress-strain experiment featuring the plateau-like behavior. Deeper insight into the molecular organization of our sim- ulated samples reveals that the underlying mechanisms are local domain rotation and growth, excluding orientational order destruction-reconstruction. It also suggests that these mechanisms may be assisted by a dissipation of elastic free energy stored in topo- logical defects created during the synthesis, which is compatible with the stress-strain irreversibility observed in some main-chain LCE
Item Metadata
Title |
Molecular simulations elucidate soft elasticity in polydomain liquid crystal elastomers
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-09-08T09:00
|
Description |
Liquid crystal elastomers (LCE) — polymer networks with embedded liquid crystal units — are functional materials characterized by a pronounced coupling between elastic strain and liquid crystalline orientational ordering. When prepared by polymerization and cross-linking in the isotropic phase, and then cooled, the resulting polydomain ma- terials exhibit an extraordinary soft elastic behavior under unidirectional pulling, with a plateau-like region in the stress-strain curve, before turning into a monodomain LCE where a standard elastic resistance is recovered. Here we investigate the microscopic origin of this behavior by performing large-scale molecular iso-stress Monte Carlo simula- tions of swollen polydomain main-chain LCE. Our simulations are based on the soft-core Gay-Berne interaction potential and reproduce the stress-strain experiment featuring the plateau-like behavior. Deeper insight into the molecular organization of our sim- ulated samples reveals that the underlying mechanisms are local domain rotation and growth, excluding orientational order destruction-reconstruction. It also suggests that these mechanisms may be assisted by a dissipation of elastic free energy stored in topo- logical defects created during the synthesis, which is compatible with the stress-strain irreversibility observed in some main-chain LCE
|
Extent |
45 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Ljubljana, Faculty of Mathematics and Physics
|
Series | |
Date Available |
2017-03-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0343126
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International