- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Candidate Hard Unique Game
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Candidate Hard Unique Game Moshkovitz, Dana
Description
We propose a candidate reduction for ruling out polynomial-time algorithms for unique games, either under plausible complexity assumptions, or unconditionally for Lasserre semidefinite programs with a constant number of rounds. We analyze the completeness and Lasserre solution of our construction, and provide a soundness analysis in a certain setting of interest. Addressing general settings is tightly connected to a question on Gaussian isoperimetry. Our construction is based on our previous work on the complexity of approximately solving a system of linear equations over reals, which we suggested as an avenue towards a (positive) resolution of the Unique Games Conjecture. The construction employs a new encoding scheme that we call the {\em real code}. The real code has two useful properties: like the long code, it has a unique local test, and like the Hadamard code, it has the so-called {\em sub-code covering} property.
Item Metadata
Title |
Candidate Hard Unique Game
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-09-06T16:07
|
Description |
We propose a candidate reduction for ruling out polynomial-time algorithms for unique games, either under plausible complexity assumptions, or unconditionally for Lasserre semidefinite programs with a constant number of rounds. We analyze the completeness and Lasserre solution of our construction, and provide a soundness analysis in a certain setting of interest. Addressing general settings is tightly connected to a question on Gaussian isoperimetry.
Our construction is based on our previous work on the complexity of approximately solving a system of
linear equations over reals, which we suggested as an avenue towards a (positive) resolution of the Unique Games Conjecture.
The construction employs a new encoding scheme that we call the {\em real code}. The real code has two useful properties: like the long code, it has a unique local test, and like the Hadamard code, it has the so-called {\em sub-code covering} property.
|
Extent |
31 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: MIT
|
Series | |
Date Available |
2017-03-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0343101
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International