- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- A hands-on approach to tensor product surfaces of bidegree...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
A hands-on approach to tensor product surfaces of bidegree (2,1) Seceleanu, Alexandra
Description
A central problem in geometric modeling is to find the implicit equations for a curve or surface defined by a regular or rational map. For surfaces the two most common situations are when the surface is given by a map \(\mathbb{P}^1\times \mathbb{P}^1 \to \mathbb{P}^3\) or \(\mathbb{P}^2 \to \mathbb{P}^3\). The image of regular map \(\mathbb{P}^1\times \mathbb{P}^1 \to \mathbb{P}^3\) is called a tensor product surface. We study singularities of tensor product surfaces parametrized by polynomials of bidegree (2, 1) in relation to the syzygies of the ideal generated by these polynomials. We determine all possible numerical types of bigraded minimal free resolutions of such an ideal. This is based on joint work with Hal Schenck and Javid Validashti.
Item Metadata
Title |
A hands-on approach to tensor product surfaces of bidegree (2,1)
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-08-09T14:31
|
Description |
A central problem in geometric modeling is to find the implicit equations for a curve or surface defined by a regular or rational map. For surfaces the two most common situations are when the surface is given by a map \(\mathbb{P}^1\times \mathbb{P}^1 \to \mathbb{P}^3\) or \(\mathbb{P}^2 \to \mathbb{P}^3\). The image of regular map
\(\mathbb{P}^1\times \mathbb{P}^1 \to \mathbb{P}^3\) is called a tensor product surface. We study singularities of tensor product surfaces parametrized by polynomials of bidegree (2, 1) in relation to the syzygies of the ideal generated by these polynomials. We determine all possible numerical types of bigraded minimal free resolutions of such an ideal. This is based on joint work with Hal Schenck and Javid Validashti.
|
Extent |
42 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Nebraska
|
Series | |
Date Available |
2017-02-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0342699
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International