BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Direct Numerical Simulations of Complex Multiphase Flows Tryggvason, Gretar

Description

Talk: Plenary Abstract: Direct numerical simulations (DNS), where every continuum length and time scale is fully resolved, allow us to follow the evolution of complex flows for sufficiently long time so that meaningful statistical quantities can be gathered. Results for relatively simple multifluid and multiphase systems with bubbles and drops in turbulent flows are now available, but new challenges are emerging. First of all, DNS of very large systems are yielding enormous amount of data that, in addition to providing physical insights, opens up new opportunities for the development of lower order models that describe the average or large-scale behavior. Recent results for bubbly flows and the application of statistical learning tools to extract closure models from the data suggest one possible strategy. Secondly, success with relatively simple systems calls for simulations of more complex problems. Multiphase flows often produce features such as thin films, filaments, and drops that are much smaller than the dominant flow scales and are often well-described by analytical or semi-analytical models. Recent efforts to combine semi-analytical models for thin films using classical thin film theory, and to compute mass transfer in high Schmidt number bubbly flows using boundary layer approximations, in combination with fully resolved numerical simulations of the rest of the flow, are described.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International