- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Stochastic Soliton Scattering
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Stochastic Soliton Scattering Holm, Darryl
Description
We develop a variational method of deriving stochastic partial differential equations whose so- lutions follow the flow of a stochastic vector field. As an example in one spatial dimension, we numerically simulate singular solutions (peakons) of the stochastically perturbed Camassa- Holm (CH) equation derived using this method. These numerical simulations show that peakon soliton solutions of the stochastically perturbed CH equation persist and provide an interesting laboratory for investigating the sensitivity and accuracy of adding stochasticity to stochastic partial differential equations (SPDE). In particular, some choices of stochastic perturbations of the peakon dynamics by Wiener noise allow peakons to interpenetrate and exchange order on the real line in overtaking collisions, although this behaviour does not occur for other choices of stochastic perturbations which preserve the Euler-Poincar ́e structure of the CH equation, and it also does not occur for the original peakon solutions of the unperturbed deterministic CH equa- tion. The discussion raises issues about the science of stochastic deformations of evolutionary PDE and the sensitivity of the resulting solutions of the SPDE to the choices made in stochastic modelling.
Item Metadata
Title |
Stochastic Soliton Scattering
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-06-23T09:30
|
Description |
We develop a variational method of deriving stochastic partial differential equations whose so- lutions follow the flow of a stochastic vector field. As an example in one spatial dimension, we numerically simulate singular solutions (peakons) of the stochastically perturbed Camassa- Holm (CH) equation derived using this method. These numerical simulations show that peakon soliton solutions of the stochastically perturbed CH equation persist and provide an interesting laboratory for investigating the sensitivity and accuracy of adding stochasticity to stochastic partial differential equations (SPDE). In particular, some choices of stochastic perturbations of the peakon dynamics by Wiener noise allow peakons to interpenetrate and exchange order on the real line in overtaking collisions, although this behaviour does not occur for other choices of stochastic perturbations which preserve the Euler-Poincar ́e structure of the CH equation, and it also does not occur for the original peakon solutions of the unperturbed deterministic CH equa- tion. The discussion raises issues about the science of stochastic deformations of evolutionary PDE and the sensitivity of the resulting solutions of the SPDE to the choices made in stochastic modelling.
|
Extent |
38 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Imperial College London
|
Series | |
Date Available |
2017-01-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0340431
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International