- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Non-uniqueness results for the anisotropic Calderon...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Non-uniqueness results for the anisotropic Calderon problem with data measured on disjoint sets Nicoleau, Francois
Description
In this talk, we give some simple counterexamples to uniqueness for the Calderon problem on Riemannian manifolds with boundary when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of three dimensional Riemannian manifolds with boundary having the topology of toric cylinders. This is a work in collaboration with Thierry Daudé (Cergy-Pontoise) and Niky Kamran (McGill).
Item Metadata
Title |
Non-uniqueness results for the anisotropic Calderon problem with data measured on disjoint sets
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-05-31T12:32
|
Description |
In this talk, we give some simple counterexamples to uniqueness for the Calderon problem on Riemannian manifolds with boundary when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of three dimensional Riemannian manifolds with boundary having the topology of toric cylinders. This is a work in collaboration with Thierry Daudé (Cergy-Pontoise) and Niky Kamran (McGill).
|
Extent |
27 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Université de Nantes
|
Series | |
Date Available |
2017-01-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0340013
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International