- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Phase-field modeling of rapid fracture in linear and...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Phase-field modeling of rapid fracture in linear and nonlinear elastic solids Karma, Alain
Description
This talk will discuss phase-field modeling of dynamic instabilities of fast moving cracks in brittle solids. Experiments in thin gels have shown that cracks can attain extreme speeds approaching the shear wave speed when micro branching, which limits propagation to smaller speeds in thick samples, is suppressed. Furthermore, they have revealed the existence of an oscillatory instability with an intrinsic system-size-independent wavelength above a threshold speed. In apparent contradiction with experimental observations, the commonly used phase-field formulation of dynamic fracture yields crack that branch by tip splitting at roughly half the shear wave speed. A phenomenologically based phase-field formulation is proposed that can model crack propagation at extreme speeds by maintaining the wave speed constant inside the microscopic process zone. Simulations of this model for linear elasticity outside the process zone produce crack that tip split above a high threshold speed but no oscillations. In contrast, simulations for nonlinear neo-Hookean elasticity yield crack oscillations above a ultra-high speed threshold. Those oscillations have an intrinsic wavelength that scale with the size of the nonlinear zone surrounding the crack tip, which can be much larger than the process zone scale, and bear striking similarity with observed oscillations in thin gels.
This work was carried out in collaboration with Chih-Hung Chen and Eran Bouchbinder and his supported by a grant from the US-Israel Binational Science Foundation.
Item Metadata
Title |
Phase-field modeling of rapid fracture in linear and nonlinear elastic solids
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-05-09T15:38
|
Description |
This talk will discuss phase-field modeling of dynamic instabilities of fast moving cracks in brittle solids. Experiments in thin gels have shown that cracks can attain extreme speeds approaching the shear wave speed when micro branching, which limits propagation to smaller speeds in thick samples, is suppressed. Furthermore, they have revealed the existence of an oscillatory instability with an intrinsic system-size-independent wavelength above a threshold speed. In apparent contradiction with experimental observations, the commonly used phase-field formulation of dynamic fracture yields crack that branch by tip splitting at roughly half the shear wave speed. A phenomenologically based phase-field formulation is proposed that can model crack propagation at extreme speeds by maintaining the wave speed constant inside the microscopic process zone. Simulations of this model for linear elasticity outside the process zone produce crack that tip split above a high threshold speed but no oscillations. In contrast, simulations for nonlinear neo-Hookean elasticity yield crack oscillations above a ultra-high speed threshold. Those oscillations have an intrinsic wavelength that scale with the size of the nonlinear zone surrounding the crack tip, which can be much larger than the process zone scale, and bear striking similarity with observed oscillations in thin gels.
This work was carried out in collaboration with Chih-Hung Chen and Eran Bouchbinder and his supported by a grant from the US-Israel Binational Science Foundation. |
Extent |
61 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Northeastern University
|
Series | |
Date Available |
2017-02-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0320945
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International