BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Algebraic (volume) density property Kaliman, Shulim

Description

Let $X$ be a connected affine homogenous space of a linear algebraic group $G$ over $\mathbb C$. (1) If $X$ is different from a line or a torus we show that the space of all algebraic vector fields on $X$ coincides with the Lie algebra generated by complete algebraic vector fields on $X$. (2) Suppose that $X$ has a $G$-invariant volume form $\omega$. We prove that the space of all divergence-free (with respect to $\omega$) algebraic vector fields on $X$ coincides with the Lie algebra generated by divergence-free complete algebraic vector fields on $X$ (including the cases when $X$ is a line or a torus).

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International