- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Large covariance estimation for spatial functional...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Large covariance estimation for spatial functional data with an application to twin studies Risk, Benjamin
Description
Twin studies can be used to disentangle the environmental and genetic contributions to brain structure and function. A trait's heritability can be estimated using Fisher's Additive, Common, and unique Environmental (ACE) model, which can be formulated as a structural equation model (SEM). The Human Connectome Project has generated large amounts of preprocessed imaging data from twin pairs. A massive univariate analysis would estimate an SEM at each location in the brain. An important question is whether the genetic contribution is significant over a region-of-interest. Extending the ACE model to spatial domains requires an estimation of the covariance functions. Here we propose a spatial functional SEM. We develop a method for large covariance estimation using functional PCA. Our framework allows for inference over arbitrary domains of the cortex. Additionally, the approach improves predictions. Joint work with Dr. Hongtu Zhu
Item Metadata
Title |
Large covariance estimation for spatial functional data with an application to twin studies
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2016-02-02T14:28
|
Description |
Twin studies can be used to disentangle the environmental and genetic contributions to brain structure and function. A trait's heritability can be estimated using Fisher's Additive, Common, and unique Environmental (ACE) model, which can be formulated as a structural equation model (SEM). The Human Connectome Project has generated large amounts of preprocessed imaging data from twin pairs. A massive univariate analysis would estimate an SEM at each location in the brain. An important question is whether the genetic contribution is significant over a region-of-interest. Extending the ACE model to spatial domains requires an estimation of the covariance functions. Here we propose a spatial functional SEM. We develop a method for large covariance estimation using functional PCA. Our framework allows for inference over arbitrary domains of the cortex. Additionally, the approach improves predictions. Joint work with Dr. Hongtu Zhu
|
Extent |
26 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Statistical and Applied Mathematical Sciences Institute and University of North Carolina
|
Series | |
Date Available |
2016-08-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0307303
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International