- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- MCMC for non-Linear State Space Models Using Ensembles...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
MCMC for non-Linear State Space Models Using Ensembles of Latent Sequences Shestopaloff, Alexander
Description
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003), we introduce a new Markov Chain Monte Carlo method for non-linear state space models. The key idea is to perform parameter updates conditional on an enormously large ensemble of latent sequences, as opposed to a single sequence, as with existing methods. We look at the performance of this ensemble method when doing Bayesian inference in the Ricker model of population dynamics. We show that for this problem, the ensemble method is vastly more efficient than a simple Metropolis method, as well as 1.9 to 12.0 times more efficient than a single-sequence embedded HMM method, when all methods are tuned appropriately. We also introduce a way of speeding up the ensemble method by performing partial backward passes to discard poor proposals at low computational cost, resulting in a final efficiency gain of 3.4 to 20.4 times over the single-sequence method. This research has been done jointly with Radford M. Neal.
Item Metadata
Title |
MCMC for non-Linear State Space Models Using Ensembles of Latent Sequences
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2014-02-13
|
Description |
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003), we introduce a new Markov Chain Monte Carlo method for non-linear state space models. The key idea is to perform parameter updates conditional on an enormously large ensemble of latent sequences, as opposed to a single sequence, as with existing methods. We look at the performance of this ensemble method when doing Bayesian inference in the Ricker model of population dynamics. We show that for this problem, the ensemble method is vastly more efficient than a simple Metropolis method, as well as 1.9 to 12.0 times more efficient than a single-sequence embedded HMM method, when all methods are tuned appropriately. We also introduce a way of speeding up the ensemble method by performing partial backward passes to discard poor proposals at low computational cost, resulting in a final efficiency gain of 3.4 to 20.4 times over the single-sequence method. This research has been done jointly with Radford M. Neal.
|
Extent |
42 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Toronto
|
Series | |
Date Available |
2014-08-07
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0043899
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada