- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Functional Data Analysis of Imaging Data
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Functional Data Analysis of Imaging Data Zhu, Hongtu
Description
Motivated by recent work on studying massive imaging data in various neuroimaging studies,our group proposes several classes of spatial regression models including spatially varying coefficient models, spatial predictive Gaussian process models, tensor regression models, and Cox functional linear regression models for the joint analysis of large neuroimaging data and clinical and behavioral data. Our statistical models explicitly account for several stylized features of neuorimaging data: the presence of multiple piecewise smooth regions with unknown edges and jumps and substantial spatial correlations. We develop some fast estimation procedures to simultaneously estimate the varying coefficient functions and the spatial correlations. We systematically investigate the asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. Our Monte Carlo simulation and real data analysis have confirmed the excellent performance of our models in different applications.
Item Metadata
Title |
Functional Data Analysis of Imaging Data
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2014-02-11
|
Description |
Motivated by recent work on studying massive imaging data in various neuroimaging studies,our group proposes several classes of spatial regression models including spatially varying coefficient models, spatial predictive Gaussian process models, tensor regression models, and Cox functional linear regression models for the joint analysis of large neuroimaging data and clinical and behavioral data. Our statistical models explicitly account for several stylized features of neuorimaging data: the presence of multiple piecewise smooth regions with unknown edges and jumps and substantial spatial correlations. We develop some fast estimation procedures to simultaneously estimate the varying coefficient functions and the spatial correlations. We systematically investigate the asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. Our Monte Carlo simulation and real data analysis have confirmed the excellent performance of our models in different applications.
|
Extent |
46 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Univerity of North Carolina at Chapel Hill
|
Series | |
Date Available |
2014-08-07
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0043883
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada