UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structure-function analyses of plant glycan-degrading enzymes McGregor, Nicholas

Abstract

Plant biomass is both the most abundant organic carbon source and the most abundant organic carbon sink on our planet. This carbon is stored primarily in the cell wall, where carbohydrates, proteins and polyphenols are interwoven to form complex purpose-built composite materials. Within plants, diverse polysaccharides are built up and broken down as part of their natural life cycle. Within the guts of multicellular organisms, a diverse and adaptable collection of bacteria anaerobically ferments complex plant polysaccharides. In this thesis, the structure and function of enzymes involved in these two processes are described. The xyloglucan endo-transglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodelling. Investigations into the ancestry of the XTH family revealed a subfamily of endo-glucanases which share a common ancestor with the XTHs. Based on product analysis, kinetics, and X-ray crystallography these EG16s have been identified as a family of β(1,4)-specific endo-glucanases with an uncommon mode of substrate recognition. Although the biological role(s) of EG16 orthologues remains to be fully resolved, the presented biochemical and tertiary structural characterisation provide insight into plant glycoside hydrolase evolution, and will continue to inform studies of plant cell walls. Within the gut, Prevotella are an important genus of Gram-negative bacteria associated with carbohydrate-rich diets. Recent genome sequencing has shown that they possess many undescribed polysaccharide utilisation loci (PULs). A revisited broad-specificity cross-linking glycan-degrading endo-glucanase (PbGH5A) is associated with a PUL of unknown function within Prevotella bryantii, an obligate anaerobe originally isolated from the bovine gut. Based on X-ray crystallography, product identification, binding assays, and kinetic measurements, the structures and functions of a variety of proteins involved in the recognition and breakdown of complex β-mannans have been determined. These include a broad-specificity endo-β-glucanase, an endo-β-mannanase, two β-mannan-binding proteins, two β-mannan acetylesterases, a mannobiose-2-epimerase, and a mannosylglucose phosphorylase. Characterisation of the two β-mannan acetylesterases provides a basis for the expansion of CAZy family CE7 and the formation of a new CE family. Furthermore, the presented model of the Prevotella β-mannan utilisation locus provides a genetic template for identifying systems which degrade complex galactomannans and glucomannans across the Bacteroidetes phylum.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International