UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Use of activity theory as basis for a novel needs-finding technique for medical device development in low-resource environments Rismani, Shalaleh

Abstract

According to the World Health Organization, appropriate medical devices are not sufficiently available in low-resource environments within low and middle income countries. Lack of systematic structures, challenges with entering existing markets and incomplete understanding of design needs within these contexts are the key reasons for this problem. It is challenging to understand the needs for medical device development in low and middle income countries because the problem space has complex socioeconomic, political, technical and clinical constraints to navigate. Existing needs-finding techniques for engineering design do not provide an explicit means of identifying and synthesizing these complex factors. The main contribution of this thesis is development of a novel needs-finding technique for medical device development, specifically for low-resource environments. The proposed novel technique is empirically compared to the needs-finding technique of the well-established Stanford Biodesign Process. In a series of studies, the Activity Theory-based Needs-finding Technique (ATNF), based on Activity Theory, was integrated into the engineering design process. The cultural historical Activity Theory, rooted in Russian psychology, provides a framework for analyzing human activity and social structures. The ATNF proposes a modified activity system that explicitly situates technology within an activity. Mapping activities and identifying tension points within them allow for a fuller understanding of design needs. The ATNF method was initially investigated through its detailed application on a case study in the field of health technology development in low-resource environments. Thereafter, an ethnographic comparative study was completed to investigate the ATNF technique and the Biodesign technique by examining the differences between the needs statements and the process of developing them. The results indicate that the novel ATNF method is more effective in identifying an appropriate scope and desired change. However, the design artefacts from the ATNF and the Biodesign techniques equally cover socioeconomic, clinical and technical issues. This suggests that the strength of the ATNF technique is in creating connections between issues to develop an appropriate scope and in identifying desired change. The research supports that the ATNF technique is a viable needs-finding method and that it has particular strengths that could be leveraged for medical device development in low-resource environments.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International