UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Progress towards a primary pressure standard with cold atoms Jooya, Kais

Abstract

This thesis describes a method of using an ultra-cold ensemble of atoms confined in a trap as an atomic primary pressure standard. The development of the standard and its current status are described in detail. This standard uses a 3D MOT to trap ⁸⁷Rb and then transfer them to a quadrupole magnetic trap where the atoms undergoes collisions with a background gas. By measuring the number of atoms left in the magnetic trap as a function of time one extract a loss rate and from this rate determine the background gas density. This loss rate is a product of the density of the background, multiplied by the loss cross section averaged over the velocity distribution of the background gas. By computing the average loss cross section in the magnetic trap and measuring the loss rate, the density of the background gas can be determined. This gives a calibration free measurement of density of a background gas in the UHV range (10-⁶ ‑ 10-⁹) Torr or (10-⁴ - 10-⁷) Pa which allows for it to be used as a standard. In conjunction with this, preparation of the atoms prior to the loss rate measurement is investigated to ensure accuracy and reproducibility of the standard. Finally a comparison between UBC's atomic standard and NIST's (National Institute for Standards and Technology) orifice flow standard is conducted via an ionization gauge which employed as a transfer standard.All measurement are carried out using Argon gas as the background gas of study.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International