- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Effects of cold wall quenching on unburned hydrocarbon...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Effects of cold wall quenching on unburned hydrocarbon emissions from a natural gas HPDI engine Turcios, Marco Antonio
Abstract
The quenching of hydrocarbon flames on cold surfaces is considered to be a potential source of unburned hydrocarbon (UHC) emissions from internal combustion engines, but its contribution to emissions has been difficult to determine due to the strong coupling between physics, chemistry and flame/wall geometry. This is particularly problematic for high pressure direct injection (HPDI) engines where high pressures, inhomogeneous mixtures and complex piston geometry are present. In this work, a computational model is implemented to determine the distance at which hydrocarbon flames quench on cold walls during numerical simulation. This model accounts for variable pressure, temperature, gas mixture and the geometry conditions. The model presented in this work is an extension of the experimental work done by Boust et. al. with stoichiometric premixed flames at low pressures. The validation of this model for high pressure and diffusion flames is presented and shows that the correct trends in heat flux and order of magnitude of quench distance are observed. This model is further refined for engine simulation and enhanced by a two-zone mass diffusion model to account for post-quench oxidation of boundary fuel. A selection of engine cases are simulated for a variety of different conditions to determine the spatial distribution and temporal evolution of unburned fuel cold surfaces. It was found that wall quenching on the piston contributes up to 50% of the total UHC during the combustion cycle, the majority of which is oxidized during the expansion stroke; the final contribution is at most 10% but frequently near or less than 1%. As the injection pressure was increased, quenching on the piston surface became more extensive, through the quenching thickness itself decreased. UHC from wall quenching occurs more readily for higher load conditions due to the richer mixtures and incomplete mixing. Altered engine timing introduced coupled effects of changed flame/wall interaction and combustion characteristics. The data obtained from the model can be used to evaluate attempts to reduce UHC by changing combustion chamber geometry.
Item Metadata
Title |
Effects of cold wall quenching on unburned hydrocarbon emissions from a natural gas HPDI engine
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2011
|
Description |
The quenching of hydrocarbon flames on cold surfaces is considered to be a potential source of unburned hydrocarbon (UHC) emissions from internal combustion engines, but its contribution to emissions has been difficult to determine due to the strong coupling between physics, chemistry and flame/wall geometry. This is particularly problematic for high pressure direct injection (HPDI) engines where high pressures, inhomogeneous mixtures and complex piston geometry are present.
In this work, a computational model is implemented to determine the distance at which hydrocarbon flames quench on cold walls during numerical simulation. This model accounts for variable pressure, temperature, gas mixture and the geometry conditions. The model presented in this work is an extension of the experimental work done by Boust et. al. with stoichiometric premixed flames at low pressures. The validation of this model for high pressure and diffusion flames is presented and shows that the correct trends in heat flux and order of magnitude of quench distance are observed. This model is further refined for engine simulation and enhanced by a two-zone mass diffusion model to account for post-quench oxidation of boundary fuel.
A selection of engine cases are simulated for a variety of different conditions to determine the spatial distribution and temporal evolution of unburned fuel cold surfaces. It was found that wall quenching on the piston contributes up to 50% of the total UHC during the combustion cycle, the majority of which is oxidized during the expansion stroke; the final contribution is at most 10% but frequently near or less than 1%. As the injection pressure was increased, quenching on the piston surface became more extensive, through the quenching thickness itself decreased. UHC from wall quenching occurs more readily for higher load conditions due to the richer mixtures and incomplete mixing. Altered engine timing introduced coupled effects of changed flame/wall interaction and combustion characteristics. The data obtained from the model can be used to evaluate attempts to reduce UHC by changing combustion chamber geometry.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-10-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0072348
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2011-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International